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Climate impacts of oil extraction increase
significantly with oilfield age
Mohammad S. Masnadi* and Adam R. Brandt

Record-breaking temperatures1 have induced governments to
implement targets for reducing future greenhouse gas (GHG)
emissions2,3. Use of oil products contributes ∼35% of global
GHG emissions4, and the oil industry itself consumes 3–4%
of global primary energy. Because oil resources are becoming
increasingly heterogeneous, requiring di�erent extraction and
processing methods, GHG studies should evaluate oil sources
using detailed project-specific data5. Unfortunately, prior
oil-sector GHG analysis has largely neglected the fact that the
energy intensity of producing oil can change significantly over
the life of a particular oil project. Here we use decades-long
time-series data from twenty-five globally significant oil fields
(>1 billion barrels ultimate recovery) tomodel GHG emissions
from oil production as a function of time. We find that
volumetric oil production declines with depletion, but this
depletion is accompanied by significant growth—in some cases
over tenfold—in per-MJ GHG emissions. Depletion requires
increased energy expenditures in drilling, oil recovery, and
oil processing. Using probabilistic simulation, we derive a
relationship for estimating GHG increases over time, showing
anexpecteddoubling inaverageemissionsover25years.These
trends have implications for long-term emissions and climate
modelling, as well as for climate policy.

To date, most greenhouse gas (GHG) analysis of the oil sector has
focused on comparing the impacts of oil-derived transport fuels to
other transport fuel options. This is a reasonable focus because the
largest source of emissions from oil use is generally the combustion
of finished fuels (for example, gasoline burned in an automobile).
However, emissions from oil and gas extraction and processing
are sometimes significant, particularly for unconventional resources
or when energy-intensive enhanced oil recovery (EOR) strategies
are used. Also from a national perspective, oil and gas extraction
can cause a significant fraction of domestic emissions in fossil fuel
exporting countries6 such asCanada (∼20%of national emissions)7,
Russia (∼20%; ref. 8), and Norway (∼28%; ref. 9).

Most large-scale emissions modelling and accounting efforts
treat the oil sector simply, often with representative GHG intensities
for upstream, refining, and consumption. Just as problematically,
nearly all oil and gas emissions estimates rely on ‘snapshot’ data
of varying quality and vintage, neglecting age-related changes in
engineering practice (for example, water/gas/steam injection) and
processing requirements (for example, fluid separation). Neglecting
temporal trends in oil-sector emissions is problematic for long-
term climate and integrated assessment modelling, where emissions
trends over decades are of interest.

A few prior studies have examined temporal trends in GHG
intensity. First, Brandt10 studied the impact of oil depletion on
the energy efficiency of oil extraction and refining in hundreds of

California oilfields. He reported increases in energy intensity of
crude oil production with depletion due to increased work of lifting
of fluids as oilfields age. Gavenas et al.6 also empirically investigated
the CO2 emissions from Norwegian oil and gas extraction, and
reported a significant increase in emissions per unit of oil extracted
over time.

Such temporal trends are important because they can affect
our decisions about the costs and benefits of oil substitutes.
Wallington et al.11 argue that neglecting temporal trends ignores the
general temporal increase in emissions from depletable resources
such as petroleum, and the general decrease in impacts of
alternative fuel technologies, attributable to technological advances.
Thus, life-cycle analysis (LCA) studies comparing alternative fuel
vehicle systems—such as those underpinning the California Low
Carbon Fuel Standard (LCFS) and European Fuel Quality Directive
(EU FQD)12–14—could unfairly disincentivize oil alternatives by
ignoring temporal trends in GHG intensity. Such a dynamic analysis
is a step in the direction of a ‘consequential’ analysis framework for
crude oil environmental impacts11.

This paper makes a first attempt to examine the temporal trends
in oilfield emissions intensity using a data-rich engineering-based
approach. We examine 25 globally important giant oilfields with
>1 billion barrels (Gbbl) of estimated ultimate recovery (EUR). We
model emissions from these oil fields over the course of decades,
computing GHG intensities as a function of time (see Methods).

The life-cycle GHG emissions of each oil field are estimated
over time using the open source Oil Production Greenhouse Gas
Emissions Estimator (OPGEE)15. OPGEE uses characteristics of
oilfields alongwith engineering computations to estimate the energy
required to produce, process and transport crude oil, with the unit
of analysis being 1 megajoule (MJ) of crude oil delivered to the
refinery entrance. Data for the modelled fields were gathered from
a variety of public statistics and scientific/technical papers, with
nearly 100 sources utilized (see Supplementary Information).

We first generated a semi-quantitative data quality assessment
for the 25 modelled fields plotted in Fig. 1. Figure 1 uses a scale
ranging from a score of 1 (low quality, red), to a score of 3
(high quality, blue). The parameters classified as being of primary
and secondary importance are derived from prior studies which
explored importance of parameters on GHG emissions16.

A score of 1 is applied when OPGEE defaults are used because
field-specific data were mostly or completely unavailable. Common
examples include the reservoir productivity index and the associated
gas treatment system configuration. A score of 2 indicates that
partial data were available, but gaps required extrapolations,
approximations, or field-level estimates. For example, flaring rates
for recent years are collected from spatial analysis of satellite
observations, but satellite flaring observations are not available
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Primary 
parameters

API Gravity 

Water−oil ratio (WOR)

Steam−oil ratio (SOR)

Flare−oil ratio (FOR)

Secondary 
parameters

Field depth

Production rate

Number of producing wells 

Productivity index

Other 
parameters

Number of water injection wells 

Reservoir pressure 

Reservoir temperature

Gas−oil ratio (GOR)

Processing practices

Associated gas processing path 

Water injection ratio 

Fraction of remaining gas reinjected 

Averages

Primary parameters ave.

Secondary parameters ave.

Overall ave.

Improvement in data quality from red to blue 1 2 3

Figure 1 | Oil fields data quality assessment. AG, Agbami; BR, Brent; CA, Cantarell; CO, Coalinga; EH, Elk Hills; EK, Ekofisk; FO, Forties; GU, Gullfaks;
HB, Huntington Beach; HI, Hibernia; KF, Kingfish; KR, Kern River; MS, Midway-Sunset; NI, Ninian; OS, Oseberg; PB, Prudhoe Bay; PI, Piper; SB, South
Belridge; SN, Snorre; SP, Spraberry Trend; ST, Statfjord; TN, Terra Nova; VE, Ventura; VH, Valhall; WI, Wilmington. White colour squares mean not
applicable (N/A—no number) when a parameter is irrelevant for the corresponding field.

over decades. For this reason, in most cases the flare-to-oil ratio
(FOR) is given a data quality score of 2. Finally, a score of 3
indicates that high-quality data from government statistics or peer-
reviewed literature were available for all (or nearly all) of the
modelling period. Note that high-quality data may still subject to
some variability or uncertainty associated with mis-measurement
or mis-reporting.

Data quality averages (primary, secondary, and overall) shown
in Fig. 1 suggest generally satisfactory data quality, with the relative
exception of Spraberry Trend (USA) and Kingfish (Australia).
These fields are therefore excluded from the probabilistic analysis
explained below. Figure 2 shows time-series trends in normalized
upstream GHG emissions (g CO2 eq/MJ crude petroleum) of heavy
oil (API gravity ≤ 20◦), medium (20◦ < API≤ 30◦), and light
(API > 30◦) crudes. These results cover the period from 1949
to 2015, with years modelled varying by field (see Supplementary
Information). The first year plotted for each field is either the first
year of production (common) or the earliest year in which data were
obtained (uncommon). In Fig. 2, trends are made comparable by
normalizing yearly emissions by the earliest observation for that
field (for non-normalized results see Supplementary Information
datafile). Figure 2 shows that regardless of the crude oil type, per-
MJ GHG emissions generally increase over the life of a field. This
increase is driven by a decline in natural reservoir pressure and
increased energy expenditures on recovery methods such as water
injection, steam injection, and gas injection. In addition, increased
water production results in more mass lifted and handled per unit
of oil produced. The most significant increase in GHG intensities
correspond to a Norwegian field, Gullfaks (∼13 times), followed
by three British fields, Brent (∼9 times), Ninian (∼8 times), and
Piper (∼7 times). This is due in part to declines in oil output with
depletion, which increases the amount of fluid processed per unit of
oil produced.

For example, we can explore the evolution of the Ekofisk field, a
major oil and gas field of the North Sea17. Ekofisk GHG intensities

are low compared to many oilfields due to a highly productive early
production process. Emissions intensities declined slowly until 1976
(year 6) due to reservoir-pressure-driven primary production. After
1985, water injection was used to halt pressure declines and improve
the extraction rate. Although Ekofisk reached its production peak
in 2002 (year 32), GHG intensities continued to increase gradually.
By the end of the dataset, Ekofisk oil production declined to∼36%
of its peak level whereas the water production rate had increased to
over twice that of oil production.More energy is therefore consumed
per unit of oil extracted due to increased lifting, handling and
processing of fluids18. Despite a falling trend in overall production
of Norwegian oil and gas fields over the past decade, GHG releases
from oil industry activity have not been falling, causing concern in
Norway about GHG emissions6,17,19. This noted trend is consistent
with the patterns observed here.

Reservoir extraction methods also matter. The Kern River field
is a good example of this effect. GHG intensities from Kern River
first dramatically increased to 39.1 g CO2 eq/MJ by 1981 (model
year 16) due to the introduction of steam injection for enhanced
recovery in the 1960s and rapid increases in the rate of injection
of steam. During the early 1980s—when the oil price was at a peak
because of geopolitical tensions (that is, Iranian revolution and the
subsequent Iran–Iraq war) and market imbalances—oil companies
took strong measures to boost production. The Kern River field
eventually reached a maximum steam–oil ratio (SOR) of 7.6 bbl
steam injected per bbl oil produced. After the oil price drop of
the late 1980s, such high injection rates were uneconomic and
SOR dropped to about 3 bbl steam/bbl oil, where it remained for
many years, which reduced emissions significantly. A similar trend
occurred in the South Belridge heavy oil field.

In contrast to the general trend of increasing emissions over
time, intervention via government regulation can reduce emissions
intensity. Two Canadian offshore fields, Hibernia and Tera Nova,
provide an example of this effect (see Fig. 3). Emissions intensity
from these fields dropped due to regulation-enforced20 declines
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Figure 2 | Time-series trends in normalized upstream GHG intensities of twenty-five global oil fields (o�shore and onshore) with di�erent extraction
practices (water injection/flooding, gas injection/flooding/lifting, or steam flooding) over the course of production in the period of 1949–2015. a, Heavy
oils. b, Medium oils. c, Light oils. Filled and hollow markers represent o�shore and onshore fields, respectively. The Spraberry Trend field GHG intensities
follow a similar flat trend as the mid-50s and ends at year 67. See Supplementary Information datafile for underlying data and digital figure.

in flaring of associated gas. Regulation requires oil production
rate limitations when flare management systems (for example,
gas compression) are out of service20, resulting in large efforts by
operators to curtail flared gas. If the OPGEE default flaring–oil
ratio (FOR) for Canada is applied, the usual trends of increasing
emissions intensity are observed, but if reported flaring data are used
rather than defaults, emissions intensities decline significantly. This
highlights the importance of access to actual field data, especially for
primary-importance parameters such as FOR.

To derive general trends from the dataset, we perform time-series
Monte Carlo analysis of emissions intensity as a function of field age
(seeMethods), as shown in Fig. 4. In Fig. 4a, we take observations of
normalized GHG intensities plotted in Fig. 2 and fit each year with a
lognormal distribution (see Methods), then draw 1,000 realizations
from each lognormal fit. Each of these draws can be interpreted as
a probabilistic sample of one barrel from our sampled fields. Note
that although the 25 modelled fields are very different in geologic
specifications, oil quality, extraction practices, and so on, the results
show overall growth in life-cycle GHG intensities for the majority
of realizations, with increasing dispersion in later years, as shown
by diverging high and low percentiles. The energetic productivity
dynamics of the same fields studied elsewhere21 are consistent with
the presented GHG intensities trends. Figure 4a also plots the oil-
volume-weighted mean yearly GHG multiplier, which is generally
consistent with the 25 percentile trend. Over the course of 25 years

production, the average GHG emissions intensity increases about
twofold, while the 95 percentile barrel increases by a factor of∼3.5.

In Fig. 4b we examine the effect of time on the emissions
intensity of volume-weighted ‘baskets’ of crude oil. We create
1,000 realizations of a volume-weighted probabilistic basket where
the basket is filled from each sample field in proportion to its
production volume. We then compute and plot the time trends in
mean emissions of each basket. This is analogous to creating many
realizations of the oil-volume-weighted curve in Fig. 4a (dot-dash).
Note that dispersion across volume-weighted probabilistic baskets
is much less than dispersion for individual crudes, but the upward
trend in basket emissions is consistent.

Lastly, Fig. 5 showsmodelling parameters derived from Fig. 2. As
above, each year’s set of normalized multipliers from Fig. 2 is fitted
with a lognormal distribution (see Supplementary Information).
Figure 5 shows time trends in the normalized GHG intensities
mean (µt ) and standard deviation (σt ) of the best-fitting lognormal
distribution, along with their 95% confidence intervals. Figure 5
shows increases in both the mean and spread of the best-fitting
lognormal distribution. Clearly, over time the expected emissions
increase (that is, µt increases) while the dispersion of results also
increases (that is, σt increases). In Fig. 5 we perform linear fits
to µt and σt . These equations can be used to model expected
emissions multipliers as a function of time, which could be useful
for estimating dynamic oil-sector upstream GHG intensities.
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Figure 3 | E�ect of FOR on total LCA GHG intensities of two Canadian o�shore oil fields (Hibernia and Terra Nova) over the course of production
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In summary, the per-MJGHGemissions fromoil fields vary from
‘oil-to-oil’, but also differ significantly ‘time-to-time’ over a field’s
productive life. Although in any given oil field carbon intensity
(CI) can be estimated given current data, its average CI over its
production life is likely to be higher than a snapshot analysis
performed at early periods of high productivity. This trend, coupled
with the shift to unconventional resources noted elsewhere11, leads
to the important conclusion that theGHG intensities of both average
and marginal petroleum resources will probably increase over time.
Therefore, long-term analysis should account for these factors so
that investors, policymakers, industry, and other stakeholders can
adequate compare crudes and assess their climate consequences

both before development decisions are made. For example, oil GHG
emissions dynamics should be considered for design and allocation
of future regulatory smart tax regimes22. Such analysis would also
assist stakeholders to compare accurately the fossil-based fuels with
alternatives and to shape how they address the climate impacts of oil.

Future oil and gas reservoir management should be directed
towards both economic and environmental optimization. A clear
success story is shown above with Canadian offshore fields flare
management20. Another example is CO2 enhanced oil recovery
(EOR). CO2 EOR can simultaneously sequester CO2 and improve
oil recovery23. In regions with carbon taxes, this effect is already
seen: the Norwegian ministry of climate and environment24 argues

554

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE CLIMATE CHANGE | VOL 7 | AUGUST 2017 | www.nature.com/natureclimatechange

http://dx.doi.org/10.1038/nclimate3347
www.nature.com/natureclimatechange


NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3347 LETTERS

1 5 10 15 20 25
Year

0.00

0.25

0.50

0.75

Lo
gn

or
m

al
 lo

ca
tio

n 
pa

ra
m

et
er

, μ
t

97.5%
Fit μ
2.5%

1 5 10 15 20 25
Year

0.00

0.25

0.50

0.75

Lo
gn

or
m

al
 s

ca
le

 p
ar

am
et

er
, σ

t

97.5%
Fit σ
2.5%

a
μt = 0.019t + 0.086
R2 = 0.98

b
σt = 0.008t + 0.213
R2 = 0.93
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that their CO2 tax is likely to have caused the separation and
underground storage of the CO2 content in the gas extracted at the
Sleipner field since 1996, and at the Snøhvit field since 20086.

Making good decisions in the face of these observed long-
term trends requires more information about oil resources. Such
transparency is most likely to occur in response to reporting
guidelines and regulations that require consistent, comparable, and
verifiable data. Improving these analyses is a critical need for
development of policies that account for leakage of GHG emissions
across regulatory boundaries and to ensure that upstream climate
impacts from oil are sufficiently factored into policymaking and
decisions about use of petroleum products.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Data processing. Twenty-five large petroleum fields were chosen for this analysis.
The selected fields contain at least 1 billion barrels of EUR. Such giant fields are not
large in number but account for a large share of global petroleum production25. In
the USA, we analyse Prudhoe Bay (Alaska), Wilmington, Midway-Sunset, Kern
River, Coalinga, Huntington Beach, Ventura, Elk Hills, South Belridge (California),
and the Spraberry Trend (Texas). Canadian fields include Hibernia and Terra Nova.
We include the Cantarell field in Mexico. In the North Sea we include Brent,
Forties, Piper and Ninian from the UK, as well as Ekofisk, Statfjord, Oseberg,
Gullfaks, Snorre and Valhall from Norway. Agbami in Nigeria and Kingfish in
Australia are also included. A lack of publicly accessible data prevents analysis in
numerous major oil-producing regions, including Russia and Saudi Arabia.

The fields selected represent a range of reservoir parameters and production
practices. Both onshore and offshore fields are included. Post-primary production
practices include water flooding, steam injection, natural gas injection, and
nitrogen injection26. With regard to known parameters that can have significant
impacts on GHG intensity (previously noted ‘primary’ and ‘secondary’ parameters
of interest16), these fields vary in API gravity, water–oil ratio (WOR), flaring rate,
field depth, oil production rate, number of wells, and so on.

The life-cycle GHG emissions of each oil field are estimated over time using the
open source Oil Production Greenhouse Gas Emissions Estimator (OPGEE)
version 2.0a, developed at Stanford University15. OPGEE is an engineering-based
LCA tool which evaluates upstream oil emissions, including all activities from
primary extraction to delivery of crude at the refinery inlet gate. It includes
emissions from exploration, drilling and development, production and extraction,
surface processing, maintenance, waste disposal, and crude transport27,28. The
functional unit (or unit of analysis) is 1MJ of crude petroleum delivered to the
refinery entrance gate. OPGEE estimates emissions using engineering models of
production processes (for example, water flooding), reservoir characteristics (for
example, depth), and processing requirements (for example, application of acid gas
removal). When input data are not available, OPGEE supplies defaults based on
petroleum engineering literature.

Multiple types of reservoir stimulation and artificial lift are applied to the fields
in this analysis. The OPGEE model does not allow for simultaneous modelling of
all types of production practices. For example, gas lifting and application of a
downhole pump are mutually exclusive scenarios in OPGEE. In such cases the
overall field GHG emissions are estimated as the weighted average of each
production scenario, with weighting performed according to number of wells
applying a given technology. See work by Tripathi26 for more details. The estimated
GHG intensities and oil production data are provided in the ‘GHG Intensities &
Production Data’ Excel file.

Statistical analysis. Before fitting lognormal distributions to each year’s results,
statistical analysis was performed on normalized GHG intensities from Fig. 2. The
Lilliefors test was used to test the fit of each year’s observations to five distributions:
normal, lognormal, exponential, Weibull, and extreme value (using MATLAB
software). Over 25 modelled years, the datasets were found to reject the null
hypothesis that the data come from these distributions in 18, 13, 25, 16 and 22
years respectively. The lognormal distribution fit is most satisfactory, being rejected
in 13 out of 25 years, including the first 11 model years (no other distribution type
performed better in these early years). Due to the fact that the lognormal
distribution was favoured by the Lilliefors test, particularly in later observed years,
we proceed with a lognormal model. In a one-sample Kolmogorov–Smirnov (KS)
test against fitted lognormal distributions, the null hypothesis (that the data are
lognormally distributed) is rejected in only 1 out of 25 years (in year 1).

The lognormal distribution is thus fitted to each year’s observations, using
maximum likelihood methods (MATLAB software), resulting in lognormal µt , σt ,
and the 95% confidence interval for each parameter in each model year. These fits
are used to generate Monte Carlo realizations in Fig. 4a, as well as the results and
equations in Fig. 5.

Monte Carlo simulation. For the probabilistic simulation, we only include fields
with an acceptably long time-series, set to field greater than or equal to 25 years of
data (this removes Agbami, Hibernia and Terra Nova). We also remove two fields
with unacceptable data quality (Spraberry Trend and Kingfish based on Fig. 1).
The remaining twenty fields are: Brent, Cantarell, Coalinga, Elk Hills, Ekofisk,
Forties, Gullfaks, Huntington Beach, Kern River, Midway-Sunset, Ninian,
Oseberg, Prudhoe Bay, Piper, South Belridge, Snorre, Statfjord, Ventura,
Valhall, Wilmington.

The Monte Carlo simulation shown in Fig. 4a was performed with 1,000
realizations per year. Estimated µt , σt from lognormal fits for each year are used to
generate normally distributed random variables, which are then scaled
exponentially to generate the appropriate lognormally distributed samples. If the
corresponding non-transformed means (mt ) and standard deviations (st ) are
desired, they can be computed from µt , σt using these relationships:

µt= ln

(
m2

t√
s2t +m2

t

)
(1)

σt=

√√√√ln

(
s2t +m2

t

m2
t

)
(2)

where µt and σt are time-series (t) values of fitted lognormal parameters.
To compute the oil-volume-weighted GHG intensity presented in Fig. 4b,

baskets of size 1,000 barrels are drawn from the 20 reference fields proportionately
to their yearly volumetric oil production share of the basket. Numbers are
randomly generated (uniform distribution over [0–1]) and apportioned to one of
20 crudes depending on drawn number and proportional share of each crude (see
Supplementary Information worksheet). Next, the corresponding average GHG
intensity of each basket of 1,000 samples per year is computed 50 times for all
25 years of production. Therefore, Fig. 4b can be seen as representing the
dispersion in an oil-volume-weighted average GHG intensity.

Data availability. To model our sample of oilfields, historical data were obtained
from a variety of public statistics, government reports, and technical literature
sources. Supplementary Table 1 and ‘Input Data’ Excel file give the source for each
input parameter and the dynamic input numbers for each oilfield, respectively. In
some cases, data were digitized from literature plots29, which may introduce minor
inaccuracies due to pixel-based interpolation (these errors are likely to be small in
comparison to other approximations such as model defaults). In cases where high
temporal resolution (that is, monthly) data are reported, all data are converted to
yearly averages.
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